《分数与除法》教学设计
作为一无名无私奉献的教育工作者,通常需要用到教学设计来辅助教学,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那要怎么写好教学设计呢?以下是小编为大家整理的《分数与除法》教学设计,欢迎大家分享。

《分数与除法》教学设计1
第二课时
教学内容:
教学目标:
知识目标:
体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
能力目标:
培养学生动手动脑能力,以及判断、推理能力。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点:能求一个数的倒数。
教学难点:分数除以整数计算法则的推导过程。
教学准备:长方形纸片。
教学过程:
一、创设情景,教学分数除法的意义
1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
师:讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2
请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。
方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7
师:对这种做法大家有什么疑问吗?
生:这儿是除法怎么变成了乘法?
师:老师也有这个疑问,你能讲讲吗?
师:谁能结合图来讲一讲呢?
师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21
能再讲讲这样做的道理吗?
师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/7的多少?
通过直观图理解4/7的1/3是4/21
(3)比较归纳,发现规律。
①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?
②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?
③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!
小组活动,说算法。
④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。
出示:分数除以整数,等于分数乘这个整数的倒数。
还有需要注意的地方吗?
生:有,除数不能为0。
师:谁能把分数除以整数的计算法则用自己的话来说一说?
完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。
⑥那象这样的分数除以整数的题目在计算时要注意些什么?
生:要约分!结果最简。除号要变成乘号!
三巩固练习
学生独立完成
四、课堂小结
1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)
板书设计:
分数除以整数
教学反思:
有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式,我从现实中的分数乘法问题和找一个数的'倒数引入,帮助孩子们复习前知,当学生体会到乘除法之间的互逆关系后,由学生提出一个生活中的实际问题,引出分数除法计算的必要性,为后续的学习架好了阶梯。
本课如果仅仅关注学生是否会算了,那是不够的,在设计中,还应有另类关注。如:学生们对算理理解了吗?他们的思维是否得到了实质上的提升?他们的学习方法是否得到增进?他们是否有学习的积极态度?等等。因此,在本课教学目标的制定中,我的着眼点是不仅使学生会算,更是通过对意义的理解,让学生们深刻认识这样算的道理,突出“过程性目标”。让学生经历涂一涂、画一画、算一算、说一说的过程,在探究的过程中,让孩子们形成一种“知其然更要知其所以然”的学习态度,获取一种学习的能力,为学生的可持续发展打基础。教学中,我关注学生经历发现数学知识的过程,给学生提供动手的机会,充分借助图形语言,将抽象变直观,帮助学生体会一个分数除以整数的意义,以及“除以一个整数(零除外)等于乘这个整数的倒数”方法的合理性。接着变换探索的角度,呈现一组算式,在运算、比较的过程中再次使学生验证操作活动中发现的规律。给学生表达学习过程中体验和感悟的空间,如:谁来说一说这种算法是怎样的?你的想法是怎样的?学生在自主表达的过程中逐步积累原始体验,再通过教师的适度点拨,提升学生的数学思维。
《分数与除法》教学设计2
教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3第31的做一做,练习八的第4和5题。
教学目标:
1.通过具体的问题情境,探索并理解分数除法的计算方法。
2.确地进行分数除法的计算。
3.培养学生分析、推理能力。
教学过程:
一、复习引入
1.列式,说说数量关系。
小明2小时走了6km,平均每小时走多少千米?
速度=路程÷时间
2.填空。
2/3小时有()个1/3小时,1小时有()个1/3小时。
3.口算,说说分数除以整数的计算方法。
(1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2
(分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)
4.引入课题。
我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?
今天这节课我们就来学习研究“一个数除以分数”的计算方法,看谁最先学会。
板书课题:一个数除以分数。
二、解决问题,发现算法
1.理解题意,列出算式。
(1)出示例3。
(2)学生读题,理解题意。
(3)列出算式,说出列式根据什么数量关系。
板书:2÷(2/3)(5/6)÷(5/12)
2.探索整数除以分数的计算方法。
(1)2÷(2/3)如何计算呢?让我们画出线段图看看。
(2)先画一条线段表示1小时走的路程(边说边板书),怎样表示2/3小时走了2km这个条件?
(将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)
(3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。
(4)根据学生的回答把线段图补充完整,板书计算思路。
先求1/3小时走了多少千米,也就是求2的`1/2,算式:2×1/2
再求3个1/3小时走了多少千米,算式:2×(1/2)×3
(5)找出计算方法。
板书:(乘法结合律)
现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)
启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以
观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?
强调:被除数没有变,除号变乘号,除数变成了它的倒数。
(6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。
板书,学生齐读。
3.探索分数除以分数的计算方法。
(1)让学生尝试计算5/6÷5/12。
我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。
(2)学生汇报,教师板书:
(3)为什么写成×(12/5)?
(4)怎样验证这种计算结果是正确的?
学生可能回答:
①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5
再求12个1/12小时走了多少千米,算式是5/6×1/5×12
②用乘法验算。
(5)回答“谁走得快些”。
(6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?
让同桌学生相互议一议,再指名回答。
(7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?
强调:除以一个不等于0的数。
齐读法则。
三、巩固练习
1.口算。(采用口算对折卡片)
(1)不能约分的2÷3/5=1/3÷2/5=
(2)能约分的3÷3/4=2/7÷6/7=
2.完成课本第31页“做一做”第1题,填在书上。
第2题,写在课堂练习本上,写出过程。
3.直接写出得数。
1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=
四、师生共同小结
1.这节课我们学习了哪些知识?
2.一个数除以分数的计算方法是什么?
五、布置作业(略)
《分数与除法》教学设计3
教学目标
1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量关系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的.面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
(二)练习
果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?
1.找出已知条件和问题
2.画图并分析数量关系
3.列式解答
解1:设一共有果树 棵.
答:一共有果树640棵.
解1: (棵)
(三)教学例2
例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?
1.教师提问
(1)题中的已知条件和问题有什么?
(2)有几个量相比较,应把哪个数量作为单位1?
2.引导学生说出线段图应怎样画?上衣价格的
3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)
4.让学生独立用列方程的方法解答,并加强个别辅导.
解:设一件上衣 元.
答:一件上衣 元.
5.怎样直接用算术方法求出上衣的单价?
(元)
6.比较一下算术解法和方程解法的相同之处与不同之处.
相同点:都要根据数量间相等的关系式来列式.
不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.
三、巩固练习
(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?
提问:谁是单位1?数量间相等的关系式是什么?怎样列式?
(米)
(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?
(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?
1.课件演示:
2.列式解答
四、课堂小结
这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?
五、课后作业
(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?
(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?
(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?
六、板书设计
《分数与除法》教学设计4
教学目标
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。
3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。
教学重难点
理解分数与除法的关系
教学准备
每人准备4张同样大小的圆片
教学过程
一、引入情境,揭示例题
口答题
1、把8块饼干平均分给4个小朋友,每人分得几块?
2、把4块饼干平均分给4个小朋友,每人分得几块?
3、把3块饼干平均分给4个小朋友,每人分得几块?
怎样列式?板书3÷4
引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?
不满1块那该怎么表示呢?
生:小数或分数
二、实践操作探索研究
师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?
学生动手操作
教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。
师:接下来我们请同学汇报一下他们研究所得结果。
(生讲述这样分的理由)
教师总结:(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。
(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。
总结:把3块饼干平均分给4个小朋友,每人分得3/4块
板书:3÷4=3/4(块)
师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?
学生口述理由。板书:3÷5
师:想想该怎么去分?把你的想法和同桌交流下。
指名让学生说说思考过程。
板书:3÷5=3/5(块)
师:如果分给7个小朋友呢?
学生口述3÷7=3/7(块)
三、归纳总结,围绕主题
师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。
板书课题:分数与除法的关系
生相互交流。教师板书:被除数÷除数=
师:除法算式又可以写成什么形式?
生补充:被除数÷除数=被除数/除数
师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?
生:a÷b=a/b
师:这里的a和b可以取任何数吗?为什么?
生:除数不能为0。
师:分数和除法之间的关系,你有什么好的方法记住它们吗?
生交流讨论并回答
师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。
四、巩固练习,拓展延伸
师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。
集体校对。
师引导:比较上下两行有什么不同?
在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。
师:接下来请大家独立完成“试一试”两小题。
然后小组交流你是怎么想的?
师:把7分米改写成用米作单位,可以列怎样的除法算式?
生:7÷10=7/10(米)
师:第二个呢?
生:23÷60=23/60(时)
师:独立完成“练一练”的第二题
集体讲评校对。
师:完成“练习八”的第一题口答
师:完成“练习八”的第三题
学生在书本上完成,
教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?
五、课堂作业
完成“练习八”的第二题
教后反思:
本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的'研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。<
《分数与除法》教学设计5
教材分析:
教材中呈现了两个问题,经过比较我们不难发现,这两个问题的共同点是都把分,第(1)题是平均分成2份,第(2)题是平均分3份,第(1)题的算式是除数 的分子是能被除数整除的,而第(2)题的算式是
4平均74 ÷2,被74 ÷3,被除数 的分子是不能被37整除的。无论哪种方法,目的只有一个,就是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。
学情分析:
这部分内容在学习,是在学生学习了分数乘法和认识了倒数在基础上进行的。学生之前掌握了分数乘分数的计算方法,为本单元在新知识起到了良好在铺垫作用。学生对倒数在认识,为分数除法中“除以一个数(0除外)等于乘这个数在倒数”的应用打下了基础。
教学方法:
学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。
教学内容:
教科书第55-56页 ,涂一涂、算一算及想一想、填一填和课后试一试
教学目的:
1、在涂一涂、算一算等活动中,探索理解分数除法的意义。 2、探索并掌握分数除以整数的计算方法,并能正确计算。 3、 能够运用分数除以整数的'方法解决简单的实际问题。 4、 培养学生的动手能力和发散思维能力。
教具准备:
长方形纸 不同颜色彩笔几支 幻灯片
课时安排: 2课时
第一课时
教学过程: 一、复习旧知
1、 什么是倒数?(乘积为1的两个数互为倒数) 2、 你能举出几个例子吗?
3、 如何求一个数的倒数?(求一个数的倒数时,用1去除以这个数.如果求一个整数
的倒数,直接写成这个整数分之一即可;如果求一个分数的倒数,就是把这个分数的分子和分母互换;如果求一个小数的倒数,要将这个小数先化成分数再求;如果求一个带分数的倒数,应先将其化成假分数再求倒数.)
二、算一算
笑笑和淘气去买白糖。
问题1:他们每人买了两袋白糖,一共买了多少袋白糖?(2×2=4袋) 问题2:这些白糖一共重2千克,每袋白糖有多重?(2÷4=1/2千克)
问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?(1/2÷15=?千克)
三、探究新知
师:我们怎么解决问题3的困难呢?这就是我们今天学习的内容——除数是整数的分数除法。[板书课题:分数除法(一)]
1、出示情境图问题:把一张纸的 平均分成2份,每份是这张纸的几分之几?
师:观察屏幕上的图,想一想:是把哪一部分平均分成2份?每份是多少?在准备的长方形纸条上用自己喜欢的方法折一折,涂一涂。
学生活动,师巡视。
组织交流:通过画图,你发现了什么? 生:
4里面有四个1/7,平均分成两份,是两个1/7,就是2/7。 74 ÷2 嘛? 7师: 能用一个算式表示出涂色的过程吗?(板书算式) 师:想一想,如果不看图,你会计算
你能说说你的大胆猜想嘛?(分母不变。被除数的分子除以整数得到商的分子)
2、师:大胆的猜想是一种非常好的数学思考方法,但还要经过科学的验证。我们来看看大家的猜想能不能也解决这一题呢?
课件出示:把一张纸的平均分成3份,每份是这张纸的几分之几?(板书算式)
师:看来我们要换一种思维方式探索一种能普遍运用的方法。把这4份平均分成3份,每份是这张纸的几分之几呢?请同学们动手在纸上分一分,涂一涂,涂好后和同桌交流一下怎样分。
学生活动,师巡视
组织交流:通过画图,你发现了什么?
4平均分成3份,每份就是这张纸的4/21。 744生2:把平均分成3份,这其中的一份实际上就是的几分之几?
77生1:
师:我们之前说,求一个数的几分之几可以用乘法!
对照这两道算式,你有什么想法吗? 师:把
44平均分成3份,就相当于求的1/3,结果都是4/21,因此中间我们可以用等号连77起来。你们看,原来的除法算式就转化成什么算式?什么变了?什么没变?这样有什么用?
生:被除数没变,除号改成了乘号(板书),除数3改成了3的倒数1/3 。
(设计意图:学生运用画图或者分数的意义来解决问题,体会画图策略,锻炼学生解决问题的能力。)
提问:同样的平均分成5份,每份实际上是
44的几分之几?分成6份,每份实际上是的77几分之几?(板书算式)
师:同学们真棒!会把新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要方法。
师:现在大家会计算刚才我们上课一开始的这道题了吗?我们一起算一算。
四、巩固练习
师:下面,我们就运用我们掌握的计算方法来完成教材上第56页的“练一练”2 学生独立完成,全班交流。说一说你这节课的收获。
(设计意图:让学生计算后,观察得出结论,并进行归纳,发现规律,注意了知识胡迁移) 小结:这就是分数除以整数的常用方法,谁来说一说这种算法是怎样的?那么0能不能做除数呢?所以,这里还要不上一个条件(0除外)
五、作业设计
课件出示练一练
(设计意图:让学生学会灵活运用计算规律:做分数乘法时,可以先约分再计算或者先计算再约分。)
六、板书设计
2= ÷3= II ×= ×= ×=
《分数与除法》教学设计6
一、说教材:
1、掌握一个数除以分数的方法,并能正确计算。
2、经历猜测、验证和归纳的过程,利用通分法计算的结果来推理出倒数法计算的过程。
3、利用数形结合的方式,体会“转化”的数学思维方法。
本课时的教学重点是运用计算方法正确进行计算,教学难点是理解一个数除以分数的计算方法。
二、说教法和学法:
本课时教师在教学中引导学生多看图观察,让学生经历猜测、验证和归纳的学习过程,使他们通过小组合作理解计算法则。
三、教、学具准备。
老师准备平均分成2份、3份和4份的圆纸片各4张,为学生准备一张练习纸,练习纸上画好三组没有平均分的圆纸片和书第27页上画一画的题目,把书中已画出的部分隐去,让学生亲自去画。
四、说教学过程:
1、复习铺垫,提供猜测基础。
数学的学习离不开学生的经验基础和认知水平,为了让学生能正确理解本课时内容,我首先出示复习题1:“把1/2张饼平均分给4个小朋友,每个小朋友能分到几张饼?”学生根据前一课时所学方法分别用倒数法:1/2÷4=1/2×1/4=1/8(张)或者用通分法:1/2÷4=1×4/2×4÷4=1/8(张)通过列式计算。然后让学生说一说计算法则。
接着出示题2:有4张同样大的饼,每2张一份,可分成多少份?
在解答这两题的基础上,我提出问题:猜一猜4÷1/2等于几?由于受到上一课时的负迁移,部分学生仍然会用一个分数乘整数的倒数,算成:1/4×1/2=1/8,当然也可能会正确计算出结果。这时教师适时引导学生明白:判断一个猜想是否正确,需要通过科学地验证。
这样的设计既为学生提供了学习新知识的经验基础,又能激起学生学习新知识的兴趣。
2、验证猜想,理解计算过程。
为了让学生更易理解题意,我把书中情境图改成具有生活气息的题目:有4张同样大的饼。每个小朋友吃1/2张,可分给几个小朋友吃?
学生在练习纸上画出平均分的过程,并通过小组合作形式理解计算的过程。反馈时,教师引导学生用自己的话说清计算的思路,大部分学生会认为1张饼里有2个1/2,可以分给2个小朋友吃,4张饼就能分别8个小朋友吃,列式为:4÷1/2=4×2=8(个)。但这个过程并不能使学生自然过渡到对倒数法解题的理解,也就是说,学生通过4÷1/2=4×2=8(个)并不能理解4÷1/2可以用4×1/2的倒数来计算。这时我引进了通分法来计算:让学生观察示意图,理解4÷1/2就是求4里面含有几个1/2。而4就是8/2,根据学生以前知识结构,学生易于知道里有8个,最后根据学生的回答板书计算方法,4÷1/2=8÷1/2=8;追问:8是怎样算出来的?学生再次从计算的角度去思考:当两个分数的分母相同时,只需要用被除数的分子除以除数的分子就能求出商。
由于通分法计算遵从了学生的认知水平,易于被学生尤其是学困生理解,而倒数法的意义很难被学生理解,但它简洁的计算过程又是今后学习不可或缺的。所以在教学中我把两种计算方法同时渗透,力求使让通分法成为理解倒数法的基石。
这个教学过程完成了教学目标中的“让学生经历猜测、验证和归纳的过程,利用数形结合的方式,体会“转化”的数学思维方法。”
3、大量练习,使用计算方法。
数学的归纳过程不是把一个单一的数学现象,而是把一系列有相同特点的.数学现象抽象成具有代表意义的符号特征,这就是建模过程。
为了让学生能充分感知一个数除以分数的计算过程,我先出示了两道变式题:每个小朋友吃1/3张、1/4张饼,可分给几个小朋友吃?让学生模仿前面的例题进行实际操作,独立完成计算,教师巡视中加强学困生的辅导。
由于前面几个除数的分子都是1,学生还不会去有意识地总结计算方法,仍会去想:只要看看一张饼里有几个这个分数,然后再用4去乘个数就行了。所以此时让学生归纳倒数法计算的方法还为时过早,为了使学生摆脱这种思维的束缚,真正从倒数的角度去观察和体会除数的变化,我又引进了变式题:每个小朋友吃2/3张饼,可分给几个小朋友吃?
这时学生通过画图不再能看出一张饼可以分给几个小朋友吃了,引起学生认知经验的冲突。教师要求学生以合作的形式根据黑板上的板书去解答,并说一说:你是怎样思考的?由于倒数法计算很难说清算理,反馈时学生大多会借用通分法来说明:4÷2/3=12/3÷2/3=6。根据教学目标对通分法运用的定位(是为了使学生相信倒数法计算结果是正确的。),此时一定要让学生再次进行尝试:你们能用倒数法进行计算吗?边计算边观察:什么在变?什么不变?让学生独立计算,如果他们把被除数变成了倒数,肯定与通分法计算的结果不同,这时会自行修正,并体会老师提出的问题:什么在变?什么不变?
接着出示书中“画一画”的练习,以同桌合作的方式,再次让学生体会借用图形来理解计算的优势,认识数形结合对数学解题的帮助,从而完成这三个教学目标。
在大量计算的基础上,引导学生观察这些算式,然后用自己的话归纳出一个数除以分数的计算方法。
4、观察比较,选择计算方法。
让学生观察用通分法与倒数法的计算过程,体会倒数法在计算中简洁优美。但让学生体会:如果觉得通分法更适合,也可以使用通分法进行计算。
《数学课程标准》提倡让不同的人在数学上得到不同的发展,对于数学认知水平较低的学生,允许他选择并不优化的方法,等知识水平有了进步再来运用其他更有利的方法进行学习。
5、归纳总结,完善计算法则。
通过前面多次的叙述和大量的计算,计算法则已是呼之欲出了,但学生的语言不够简洁扼要。这时我提出:看谁说的计算方法与数学家说的方法最接近?并说出前一部分:“一个数除以分数等于——”。让学生接着完成后面的部分。最后出示书中的计算方法,并对学生的归纳总结提出鼓励性评价——太棒了,你们大多数都有数学家的天份。
五、说板书:
板书内容较多,从学生的猜测到验证过程,一步步引导学生体会数学的学习方法,为学生选择自己喜欢的计算方法提供了直观可靠的依据。
分数除法二教学设计2
教学目标:
1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。
2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。
3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。
教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:
分数除以整数计算法则的推导过程。
教学准备:
多媒体课件、长方形纸等。
教学过程:
一、旧知复习,蕴伏铺垫
复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。
1、展示问题:
(1)什么是倒数?
(2)你能举出几对倒数的例子吗?
(3)如何求一个数的倒数?
2、展示多媒体:笑笑和淘气去买白糖。
问题1:他们每人买了两袋白糖,一共买了多少袋白糖?
问题2:这些白糖一共重2千克,每袋白糖有多重?
问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?
二、创设情境,理解意义
展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。
2、汇报
三、大胆猜想
学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。
四、再次探究
1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。
2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。
3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。
除以一个整数(零除外)等于乘这个整数的倒数。
《分数与除法》教学设计7
分数除法是在学生学习了整数乘除法以及解简易方程,并且学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习分数除法的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。内容包括:分数除法、解决问题、比和比例的应用。这些知识都是学生进一步学习的重要基础,通过这些知识的学习,学生一方面基本完成任务了分数加、减、除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。
就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的几分之几是多少,要求这个数。这样的实际问题,与求一个数的几分之几是多少的实际问题具有紧密的内在联系,即数量关系相同,而区别在于已知数与未知数交换了位置。
教学目标
知识和技能:
1、使学生理解倒数的意义,会求一个数的倒数。
2、使学生理解分数除法的意义,掌握分数除法的计算法则,能熟练地进行计算。
3、使学生能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,进一步提高学生解答应用题的能力。 过程与方法:
动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。 情感、态度和价值观:
使学生进一步受到事物是相互联系的辩证唯物主义观点的启蒙教育。 教学重点、难点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。掌握分数四则混合运算的运算
顺序,能应用计算法则较熟练地进行计算。
我们来看这样一道乘法应用题,妈妈在超市买了3盒糖果,每盒
是100克,3盒糖果共重多少克?我们可以列式:100×3=300(克)
如果把这道乘法应用题改编成两道除法应用题,一起来看一下: A、3盒水果糖重300克,每盒有多重? 300÷3=100(克) B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒) (3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。 1/10×3=3/10(千克) 3/10÷3=1/10(千克) 3/10÷1/10=3(盒)
通过与前三道题我们可以得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
分数应用题是小学数学应用题的重要组成部分,分数应用题的数量关系比较复杂,学生分析起来比较困难。下面介绍几种解答分数应用题的常用方法: 一、对应法
通过审题正确判断单位“1”的量后,把具体数量与分率对应起来,这是解答分数应用题的关键。
如“某筑路队筑一段路,第一天筑了全长的1/5多10米,第二天筑了全长的2/7,还剩62米未筑,这段路全长多少米?”
题目中总长度是单位“1”的量,(62+10)米与(1—1/5—2/7)相对应,因此,总长度为:(62+10)÷(1—1/5— 2/7)=140(米)。 二、变率法
题目中几个分率的单位“1”不相同,可先统一单位“1”的量,然后变换分率,寻找已知数量的对应分率,最终解决问题。
如“学校买了一批图书,高年级分得这些书的2/5,中年级分得余下的1/4,低年级分得180本,这批图书共有多少本?
该题中的“1/4”是把余下的本数看作单位“1”,而余下本数又是总本数的(1—2/5),因此,我们可以把中年级分得的本数理解为总本数的(1— 2/5)×1/4,这样可求出总本数: 180÷[1—2/5—(1—2/5)×1/4] =400(本)。 三、常量法
题目中几个数量前后都发生了变化,而有的数量不变,这就是常量,解题时可把常量看作单位“1”。
如“小华读一本书,已读页数占未读页数的1/5,如果再读30页,已读页数就占未读页数的3/5,这本书共有多少页?”
该题中再读 30页后,已读页数与未读页数都在变化,唯独总页数没有变,把总页数看作单位“1”,则总页数为:30÷(3/3+5-1/1+5)=144(页)。 四、联系法
某些题目中几个数量都与一个数量有联系,把这个数量作为桥梁,解题思路就顺畅了。 如“某小学四、五、六年级学生共种树576棵,五年级种树棵数是六年级种树棵数的 4/5,四年级种树棵数是五年级种树棵数的`3/4,五年级种数多少棵?”
题目中五年级种树棵数与六年级种树棵数有关,又与四年级种树棵数有关,所以,五年级种树棵数是个桥梁,把它看作单位“1”,把“五年级种树棵数是六年级种树棵数的4/5”改变为“六年级种树棵数是五年级种树棵数的5/4倍”,所以,五年级种树棵数为:576÷(1+3/4+5/4)=192 (棵)。 五、转化法
将复杂问题中的某些条件进行转化,结合改变成简单的问题,从而化繁为简。
如“某工厂有三个车间,第一车间人数是其余两个车间人数的1/2,第二车间人数占其余两个车间人数的1/3,第三车间500人,三个车间共有多少人?
把“第一车间人数是其余两个车间人数的1/2”转化为“第一车间人数占三个车间总人数的1/1+2”,“第二车间人数占其余两个车间人数的1/3”转化为“第二车间人数占三个车
内容需要下载文档才能查看
间总人数的1/1+3”,这样,就能求出三个车间的总人数:500÷(1-1/1+2-1/1+3) =1200(人)。 六、假设法
对题目的某些数量作出假设,
内容需要下载文档才能查看
导致运算结果与题目不相符合,然后找出产生差异的原因,最终解决所求问题。
如“一项工程,甲、乙两队合做12天完成,现在先由甲队独做18天,余下的再由乙队接着做了8天正好完成,如果全工程由甲队独做,要多少天才能完成?”
假设甲、乙两队都做 8天,则共做1/12×8=2/3,比工作总量“1”少1/3,这1/3就是甲队(18-8)天所做的工作量,所以甲队独做的时间为:1÷ [1/3÷(18-8)]=30(天)。 七、倒推法
题目中几个分率的单位“1”不相同,而且单位“1”难以统一,可以先求部分量,再一步一步地逆推出总数。 如“一捆电线,第一次用去全长的1/6多2米,第二次用去余下的3/4少4米,还剩 16米,这捆电线有多少米?”
这题中两个分率的单位“1”均为未知量,我们可以从较小的单位“1”求起:(16-4)÷ (1-3/4)=48(米), (48+2)÷(1-1/6)=60(米)。 八、方程法
一些复杂的分数应用题用算术方法难以解答,不便于理解,如用方程可顺向求解,容易掌握。 如“一项工程,甲、乙两人合做8小时完成,甲独做14小时完成。现在甲做若干小时后,剩下的由乙接着做,前后共用18小时完成。求甲、乙各做多少小时? 设甲x小时,则乙做(18-x)小时,根据两个人的工作量之和为1,可列方程:1/14x+(1/8—1/14)×(18-x) =1,解得×=2,18-2=16(小时)。
《分数与除法》教学设计8
一、教学目标
1、结合具体事例,经历分数除以整数的过程。
2、掌握分数除以整数的计算方法,能够进行分数除以整数的计算。
3、积极参与数学学习活动,有克服困难和运用知识解决问题的成功体验。
二、教学准备
小黑板,口算卡。
三、创设情境。
1、复习导入(一生说数,另一生说出它的倒数)。
2、口算练习:(1)205(2)488(3)364。
201/5481/8361/4。
四、自主探究。
(一)根据口算找规律。
1、提问:通过以上计算,你发现了什么?
预设:学生可能说出:
(1)每组的计算结果相同。
(2)除以一个数和乘以这个数的倒数的结果是一样的。
(3)每组算式里都有一个除法和一个乘法,符号后面的两个数互为倒数,其结果都是相同的.。
2、教师引导。
如果用甲数表示被除数,乙数表示除数,那么你能得出什么结论来呢?
师生总结:甲数乙数(0除外)=甲数乙数的倒数。
预设:学生可能想不到除数不能为0。
师引导:所以的数都能作除数吗?
3、验证以上结论:
(二)请学生参照以上口算习题,自己试着举出几组来。
1、出示分饼例题。
学生用自己喜欢的方法尝试解决。(教师为学生准备了圆片)。
预设:学生可能会出现两种想法。
(1)把1/2张大饼平均分成三份,就是把一张大饼平均分成(23=)6份,每份是1/6。(学生可能结合折图片来加以说明)。
(2)求每份是多少,就是求的是多少?
教师根据学生的汇报情况,随机板书。
2、学生观察计算过程,谈发现。
3、师生共同总结分数除以一个数的计算方法。
分数除以一个数(0除外)等于分数乘这个数的倒数。
五、巩固练习。
1、完成试一试。
学生练习。(集体订正时,让学生说一说自己是怎么想的?)。
2、完成练一练。
第1、2、4题:学生完成后,汇报解题思路。师生共同交流。
六、交流收获。
通过这节课的学习,你有哪些收获?
《分数与除法》教学设计9
一、教学内容:分数与除法,教材第65、66页例1和例2
二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65 页的例1 。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
( 3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。
老师根据学生回答。(板书:1 ÷ 3 =3(1)块)
(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2 。
( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。
方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
( 3 )加深理解。(课件演示)
老师:4(3)块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。
②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。
现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的.数。)
( 4 )巩固理解
① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))
4.归纳分数与除法的关系。
( l )观察讨论。
请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)
②1米的8(3)等于3米的( )
③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的10(1) ( )
②1米的4(3)与3米的4(1)一样长。( )
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )
④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想
①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
《分数与除法》教学设计10
教学过程:
一、复习与准备
1、根据题意,看图写出代数式。
(1)苹果有x kg,西瓜的质量比苹果重1/4。
西瓜比苹果重kg,西瓜重kg。
(2)鸡有x只,鸭的只数比鸡少1/3。鸭比鸡少X只,鸭有X只。
2、根据题意列出方程。
(1)六(1)班有15人参加了合唱队,占全班人数的1/3,六(1)班有多少人?
(2)美术小组的人数比航模小组多1/4,美术组的人数比航模组多5人。航模组有多少人?
出示例2。
1、审题。
(1)看例题的插图,理解题目的意思。复述题意,说说知道了什么,要求什么。
(2)分析题意,说说你对“美术小组的人数比航模小组多1/4”这一条件的理解。
(航模小组人数看作单位“1”,美术小组的人数多,多的人数相当于航模小组4等份中的1份。)
(3)理解数量关系,让学生自己试着画图表示两个小组的人数关系。(学生可以选用条形、线段或其他图形表示人数)
2、分析、解答。
(1)出示线段图。
(2)说说数量关系。
根据已知条件“美术小组的人数比航模小组多1/4”直接得出数量关系:
航模小组的人数+美术小组比航模小组多的人数=美术小组的人数
或者:航模小组的人数+航模小组的人数×1/4=美术小组的人数
(3)学生根据得到的数量关系列方程解答。
(4)交流各自的解法。
(5)阅读课本,完成课本上的'填空。
3、改变例2。
出示:航模小组有20人,美术组的人数比航模小组多1/4,美术小组有多少人?
(1)根据题意改变线段图。(只要改变已知数与未知数的位置)
(2)根据图意解答。
(3)启发学生与例2进行比较,说说你发现什么?
(数量关系相同,已知条件与未知问题交换后,仍然可以根据例2的数量关系列式)
教师:上面用方程解例2的思路与分数乘法问题的思路统一,我们应该好好理解、掌握它。
4、再次改变例2。
出示:美术小组有24人,美术小组的人数比航模小组少14,航模小组有多少人?
(1)根据题意改变线段图。
(2)改变方程,解方程。
5、 小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。
(三)运用新知,解决问题
1、看图口头编实际问题。
2、根据条件列方程。
(1)小红买了一本书和一枝钢笔,书的价格是10元,正好比钢笔价格少3/8,钢笔的价格是多少元?
(2)白兔的只数比黑兔多2/3,白兔有450只,黑兔有多少只?
(3)白兔的只数比黑兔多2/3,白兔比黑兔多180只,黑兔有多少只?
3、根据所给方程口头编实际问题。(小组内交流)
四、全课总结(略)
教学内容:教科书第39页的例2。
教学目标:
1、学习运用线段图帮助分析数量关系。
2、学习列出方程,解决已知一个数的几分之几是多少,求这个数的实际问题。
3、在分析数量关系,列出方程解决实际问题的过程中,提高分析问题、解决的能力。
《分数与除法》教学设计11
板书设计(需要一直留在黑板上主板书)
分数除法
例1:每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
300g水果糖,每盒重100g,可以装几盒?
300÷ 100=3(盒)
归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)
学生学习活动评价设计
通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的几分之几是多少求这个数的实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。
教学反思
本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。
主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的'作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。
《分数与除法》教学设计12
一、教学内容:分数与除法,教材第65、66页例1和例2
二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65 页的例1 。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。
( 3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。
老师根据学生回答。(板书:1 ÷ 3 =块)
(4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?
通过这样的练习,为下面的操作打下基础。
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2 。
( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。
方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。
( 3 )加深理解。(课件演示)
老师:块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。
②把3块饼叠在一块分,分了一次,每人分得3块,就是块。
现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)
( 4 )巩固理解
① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?()
借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。
4.归纳分数与除法的关系。
( l )观察讨论。
请学生观察1÷3 = (块)3÷4 =(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)
②1米的等于3米的( )
③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。
解释0.5÷3= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的 ( )
②1米的与3米的一样长。( )
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( )
④把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想
①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
教学反思:
教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的`意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。
设计意图:
1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。
2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。
3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。
《分数与除法》教学设计13
——分数除以整数
分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。
(1)4/7÷2(2)4/7÷3
=4/7×1/2
=2/7
教学反思:
《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:
一、充分利用学生最佳的学习状态
课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。
二、让学生在不同的活动中探索数学。
数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。
三、让学生在不同层次的练习中应用数学。
学数学的`目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。
3、《分数除法》教学设计
教学设想:
1、注重考虑学生的知识起点,引发学生的认知,让学生感知“用分数表示除法的商”的产生与发展的过程。
2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。
3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。
教学目标:
1、理解分数与除法的关系,知道如何用分数表示除法算式的商。
2、培养学生动手操作、合作交流和灵活运用知识的能力。
3、通过学习,培养学生转化的数学思想和勇于探索的精神。
教学重点:
理解分数与除法的关系。
教学难点:
具体体会每一个商的由来和表示的含义。
教学过程:
一、感知关系
1、问题:把6米长的绳子平均分成3段。每段长多少米?
把1米长的绳子平均分成3段。每段长多少米?
提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)
2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?
板书:被除数÷除数=被除数/除数
二、探究关系
1、、验证关系
(1)通过动手操作验证
出示实例:把3块饼平均分给4个小朋友,每人分得多少块?
列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)
动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。
同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。
反馈验证
引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。
板书:3÷4=3/4
(2)运用分数意义验证
师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途敬验证分数与除法的关系吗?
出示例[2]:17分是几分之几小时?
引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)
1÷60=1/60 17÷60=17/60(小时)
引导小结:分数与除法之间的关系,还可以用来转化名数。
2、揭示关系
师:通过刚才的验证,你得出了哪些结论?
①两个数相除,当商不是整数时,可以用分数来表示。
②被除数÷除数=被除数/除数。
师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?
联系
区别
除法
被除数
除号
除数
是一种运算
分数
师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b
引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0
三、巩固关系
1、强化分数与除法的关系。
① P.82 2 ②(P.82 4)
③填上合适的分数8cm=( )m 13g=( )kg 15dm2=( )m2 29分=( )小时
④在括号里填上合适的数
( )÷( )= 5/8, 3/5=( )÷( ),( )/( )=( )÷( )
2、比较练习,完成P.82 3
①学生选择条件,列式解答。
②引导比较:联系都占总数的1/3,区别能否用整数表示商
四、总结提升
师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)
质疑: 5/8这个分数表示的意义是什么?还可以怎样理解?
《分数与除法》教学设计14
教学目标
1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.
2.掌握分数乘、除法应用题的分析、解答方法.
教学重点
训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.
教学难点
准确判断单位1,正确地解答分数应用题.
教学步骤
一、铺垫孕伏
(一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?
(二)判断单位1.
1.鹅的只数是鸭的 .
2.甲的 是乙.
3.乙是甲的 .
4.男生人数的 相当于女生.
5.小齿轮的齿数占大齿轮的 .
(三)列式计算.
1.4是12的几分之几?
2.12的 是多少?
3.一个数的 是4,求这个数.
二、探究新知
(一)教学例3第(1)题
池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
1.读题并找出已知条件和问题
2.提问:应把谁看作单位1?是根据题中哪句话判断的?
3.画图.
4.列式解答
答:鹅的只数是鸭的 .
(二)教学例3第(2)、(3)题.
池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?
1.画图理解题意
2.列式解答
3.集体订正
(三)小结
这三道题有什么相同点和不同点?解题关键是什么?
1.结构上
相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;
不同点:已知和未知不一样.
2.解题思路上
相同点:都要首先弄清谁作标准,把谁看作单位1;
不同点:根据已知、未知的变化,确定不同的解答方法.
解题关键是:正确分析题中的数量关系,明确谁作单位1.
教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解
答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位1.这样才能提高解答分数应用题的能力.
三、全课小结
这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位1,从而确定解答方法.
四、巩固练习
(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?
(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?
(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?
五、课后作业
(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(二)学校买了阔水30瓶,红墨水24瓶.阔水是红墨水的几倍?
(三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?
六、板书设计
分数乘、除法应用题对比
1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
412=
答:鹅的只数是鸭的 .
2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12 =4(只)
答:池塘里有4只鹅.
3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4 =12(只)
答:池塘里有12只鸭.
5、《分数除法》教学设计
教材分析:
本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的'内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、 谈话激趣,复习辅垫
1. 师生交流
师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)
对,水是我们体内含量最多的物质,它对我们人体是至关重要的,使成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?
师:老师查到了一些资料,我们一起来看一下。(课件出示)
2.复习旧知
师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?
学生回答后说明理由。
师:算一算你们自己体内水分的质量吧!
生答
师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?
生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量
35× 5 (4 )=28(千克)
师:谁还能根据另一个信息写出等量关系式?
的体重× 3 (2 )=体内的水分的重量
2. 揭示课题
师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。
二、 引导探究,解决问题
1. 课件出示例题。
2. 合作探究
师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。
3. 学生汇报
生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)
生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。
28÷ 5 (4 )=35(千克)
4. 比较算法
比较算术做法与方程做法的优缺点?
(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)
5. 对比小结
和前面复习题进行比较一下,看看这题和复习题有什么异同?
(1) 看作单位“1”的数量相同,数量关系式相同。
(2) 复习题单位“1”的量已知,用乘法计算;
例1单位“1”的量未知, 可以用方程解答。
(3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。
6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?
问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?
单位“1”是已知还是未知的?
根据学生回答画线段图。
根据题中的数量关系找学生列出等量关系式。
学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。
师:这道题你还能用其它方法解答吗?
(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)
三、 联系实际,巩固提高
1. (投影)看图口头列式,并用一句话概括题中的等量关系。
2.练一练:
(1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?
(2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?
3.对比练习
(1)一条路50千米,修了 5 (2 ),修了多少千米?
(2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?
(3)一条路50千米,修了 5 (2 )千米,还剩多少千米?
四、全课小结畅谈收获
①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。
教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。
《分数与除法》教学设计15
(一)教学目标。
1、理解并掌握分数除法的计算方法,会进行分数除法计算。
2、会解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4、能运用比的知识解决有关的实际问题。
(二)教材说明和教学建议。
1、本单元内容的结构及其地位作用。
本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质,求比值与化简比,及其比的应用。
本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。
通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。
本单元由三小节组成,各小节内容的编排体系及其内在联系如下图所示。
从上面的图示,不难看出教材内容之间的内在联系。
就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。
关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。教材安排在第1节里学习。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的几分之几是多少,要求这个数。这样的实际问题,与上一单元求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置。
类似地,比的'初步知识,也大体上显现出由概念到性质、方法,再到应用的递进学习过程。
把“比”安排在本单元中教学,主要有两点好处:第一,比和分数有密切的联系,如两个数的比可以用分数形式来表示。加强比和分数的联系,有利于加深学生对分数意义的理解和对比的认识,也有利于提高学生灵活运用知识解决简单实际问题的能力。第二,提早教学比的概念,可以为后面教学圆周率、百分数、统计图表等做好准备。例如,学生有了比的概念,就容易理解百分数为什么又叫做百分比。在这一节教材中,有关比的应用,只讲按比例分配的计算问题。
2、本单元教材的编排特点。
与原教材相比,本单元教材的编写有不少改进,主要体现在以下几方面。
(1)关注相关知识的类比,帮助学生理解所学知识。
本单元的教材,根据有关知识的内在联系,精心提供了一系列类比思维的素材,引导学生由此及彼,利用已有的知识,理解新学内容。例如,在讨论分数除法意义时,由整数除法的实际问题引入,通过将整数(单位:克)改写成分数(单位:千克),导出分数除法,以帮助学生理解分数除法的运算意义与整数除法相同。又如,引导学生联系比和除法、分数的关系,研究并得出比的基本性质。再如,教学比的应用时,呈现了整数问题的解法和分数解法,帮助学生理解两种解法的内在联系,促进知识的融会贯通,提高应用知识的灵活性。
(2)借助操作与图示,引导学生探索并理解分数除法的计算方法。
分数除法计算方法的探索与理解,历来是教学的一个难点。教材根据小学生的思维特点,采用手脑并用、数形结合的策略,加以突破。
在教学分数除以整数时,例题设计了一个折纸活动,让学生通过动手操作,探索计算结果,并理解算理:把一个数平均分成几份,就是求这个数的几分之一。
在教学整数除以分数时,教材引导学生画出线段图,凭借图示,将新问题转化为已经解决的问题,进而得出计算方法。
(3)部分内容作了适当的精简或加强处理。
根据《标准》,本单元分数除法的计算不包括带分数,但注意在练习中适当穿插一些假分数。这样既保证了《标准》改革意图的落实,又能满足以后进一步学习时的计算需要。
此外,本单元教材专门设置了一道例题,以实际问题为载体,引出分数混合运算。同时也能使学生初步看到分数除法在解决一般实际问题中的应用,从而突破了原来只讨论分数除法典型应用题的局限,有利于增强学生的数学应用意识。
(4)调整了分数除法应用问题的编排,鼓励学生用方程解决问题。
本单元的第二节“解决问题”,专门讨论比较典型的分数除法实际问题。同时还将原来安排在分数、小数四则混合运算单元的两步计算的实际问题,移来一并学习。在解题方法的处理上,教材提倡抓住等量关系用方程解决问题。这样,由列出形如(a/b)x=c的方程,到列出形如x±(a/b)x=c的方程,思路统一,便于理解。而且衔接紧密,较为有效地降低了学习的难度,便于学生拾阶而上。
(三)教学建议。
1、充分利用教材,促进学习迁移。
如前介绍,本单元教材在揭示相关知识的内在联系,提供类比思维的材料方面,作了不少努力。教学时,应充分利用这些资源,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。
2、加强直观教学,结合操作和图形语言,探索、理解计算方法。
为了引导学生参与探索分数除法计算方法的过程,并能有所发现,有所感悟,教材设计了折纸与画图的教学活动。教学时,教师要用好这些直观手段,给学生动手的机会和较充分的时间,让更多的学生真正在操作、观察的过程中,凭借直观,发现算法,感悟算理。而要提高这些教学活动的有效性,还需要教师给予适当的点拨,引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。
3、抓住学习的关键,组织针对性练习。
我们知道,计算分数除法的关键步骤,是把除转化为乘;列方程解答分数除法问题的关键,则在于理解问题情境中的等量关系。因此,抓住这两个关键,组织开展针对性的专项练习,是提高学习成效的重要措施。教材中已经配备了一些这样的练习。教师还可从本班学生的实际出发,酌情加以增补,力求当堂巩固。
4、本单元内容可用13课时进行教学。
【《分数与除法》教学设计】相关文章:
《分数除法》教学设计11-01
分数与除法教学设计04-04
《分数除法》教学设计07-01
《分数除法》教学设计15篇09-05
分数与除法教学反思08-22
分数除法教学反思07-03
《分数与除法》教学反思08-06
分数除法的教学反思10-07
分数除法教学反思06-09
分数与除法的应用教学反思10-11