《比例的意义》教学设计
作为一位兢兢业业的人民教师,往往需要进行教学设计编写工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么写教学设计需要注意哪些问题呢?以下是小编为大家收集的《比例的意义》教学设计,希望能够帮助到大家。

《比例的意义》教学设计1
教学目标
1.使学生理解并掌握比例的意义和基本性质。
2.认识比例的各部分的名称。
教学重点
比例的意义和基本性质。
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程
一、复习准备。
(一)教师提问复习。
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值。
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接。
教师板书:4.5∶2.7=10∶6
二、新授教学。
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
class=Normal vAlign=top width=166>
时间(时)
class=Normal vAlign=top width=166>
2
class=Normal vAlign=top width=166>
5
class=Normal vAlign=top width=166>
路程(千米)
class=Normal vAlign=top width=166>
80
class=Normal vAlign=top width=166>
200
>
1.教师提问:从上表中可以看到,这辆汽车,第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的'比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等。因此可以写成这样的等式
80∶2=200∶5或 .
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例。
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来。
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) 和 (4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就( )比例。
(2)一个比例,等号左边的比和等号右边的比一定是( )的。
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(板书)
2.练习:指出下面比例的外项和内项。
4.5∶2.7=10∶6 6∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明。
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积。
5.教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整。
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
《比例的意义》教学设计2
教学内容:比例的意义
教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:比例的意义。
教学难点:找出相等的比组成比例。
教学过程:
一、旧知铺垫
1、什么是比?
(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。
300:5=60:1
(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。
1.2:1.4=12:14=6:7
2.求下面各比的比值。
12:16:4.5:2.710:6
二、探索新知
1.教学例1。
(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)
①说一说各幅图的情景。
②图中有什么相同之处?
(2)你知道这些国旗的长和宽是多少吗?
①出现各图中国旗的长、宽数据。
②测量教室里国旗的长、宽各是多少厘米。
(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=
(3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?
①学生回答长、宽比值。
2.4:1.6=
②两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成=
(5)什么是比例?
在这一基础上,教师可以明确告诉学生比例的意义,并板书:
表示两个比相等的式子叫做比例。
(6)找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?
过程要求:
①学生猜想另外两面国旗长、宽的比值。
②求出国旗长、宽的比值,并组成比例。
③汇报。
如:5:=15:10=
5:=15:105:=2.4:1.6
==
2.做一做。
完成课文“做一做”。
第1题。
(1)什么样的比可以组成比例?
(2)把组成的比例写出来。
(3)说一说你是怎么找的。
(4)同学之间互相交流,检验各自所写的比例。
第2题。
(1)学生独立写比例,看谁写得多。
(2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
三巩固练习
完成课文练习六第1~3题。
四作业
课后记:
教学内容:比例的`基本性质
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:比例的基本质性。
教学难点:发现并概括出比例的基本质性。
教学过程:
一、旧知铺垫
1.什么叫做比例?]
2.应用比例的意义,判断下面的比能否组成比例。
0.5:0.25和0.2:0.4:和5:2
:和:0.2:和1:4
3.用下面两个圆的有关数据可以组成多少个比例?
如(1)半径与直径的比:=
(2)半径的比等于直径的比:=
(3)半径的比等于周长的比:=
(4)周长与直径的比:=
二探索新知
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
内项
外项
(2)学生认一认,说一说比例中的外项和内项。
如::=:
外内内外
项项项项
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。
板书:两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
外项的积等于内项的积。
(4)举例说明,检验发现。
如::0.5=1.2:
两个外项的积是×=0.6
两个内项的积是0.5×1.2=0.6
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:=
2.4×40=1.6×60
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)归纳。
《比例的意义》教学设计3
教学过程:
一、创设情境
近段时间,我们接触了大量的比,今天这节课,我们先来请每个同学在草稿本上任写三个比,并算出比值。
请一个同学读读他写的几个比。问:老师也写了一个比(大屏幕出示6:3),说说你的三个比中有没有可以和老师这个比做好朋友的?(说说理由)
每个同学找一找,你们有和老师比值相等的比吗?(教师板书)
同桌找一找,看哪一桌也找到了这样的一对好朋友?(教师板书)
二、学习探究比例的意义
1、观察黑板上的这几组比,有什么共同的特点?(比值相等)
因为它们比值相等,我们可以用等号对他们加以连接,(教师在黑板上板书)
2、师:像这样的等式,我们给它取了一个新名字——比例。谁能说说什么叫比例?
3、数学的语言是非常精练的,打开课本,看看课本中是如何定义的?(学生读,教师板书),教师阐述:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
4、大屏幕出示教师写的另一个比,6:4,谁能为它配上一个好朋友,并写成比例。
5、练习:出示例1(大屏幕)提问,这列火车两次行驶的时间不同,行驶的路程也不相同,但这两次有没有相同的地方?我们能不能这个根据速度相同,写出一个比例。(交流)
6、大屏幕出示课本中的试一试:下面哪一组的两个比可以组成比例。(手指表示)
7、师生小结:如果判断两个比能否组成比例,最关键是看什么?
三、学习探究比例的基本性质
1、比和比例有着密切的联系,你觉得它们有区别吗?
教师小结:“比和比例的意义不同,比例中有两个比,有四个数;比是一个比,有两个数,两个比值相等的比能组成比例。”
2、比有两个数,分别叫做比的前项和比的后项,那么比例的四个数也各有名字,叫什么呢?快速浏览课本67页,找到并读一读,然后把书合拢,看谁最先合拢课本?
教师检查学生对各部分名称的掌握情况,如果写成分数形式,还能说说各自的名称吗?
6:4=3:2 =
3 、探索比例的基本性质
(1)填数。老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?
(2)猜测。学生回答,教师在方框下面板书,如1和24,2和12,……追问:“你有什么发现?把你的发现悄悄地说给同桌听一听。”
(3)验证。大家猜测说“在比例中,两个外项的积等于两个内项的积”,是不是所有的比例都有这样的规律呢,还需要我们验证。
教师组织学生用黑板上的比例和各自写的比例进行验证。
(4)小结。其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。
(5)如果比例写成分数形式,这怎么相乘?
(6)应用比例的`基本性质判断下面的比例是否正确?(大屏幕出示)
(7)小结:判断两个比能不能组成比例,既可以通过计算比值来判断,也可以根据比例的基本性质来判断。
大屏幕出示:用你喜欢的方法判断下面的比例是否正确?
四、巩固提升
1、猜猜我是谁?(大屏幕出示)
2、选择题:(大屏幕出示)学生用手指表示正确选项的序号
3、(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)
谁能说出老师的秘诀?
(2)现在轮到我考你:3、4、6、8 4、6、7、9
(学生回答后让他说出判断理由)
(3)请你独立用3、4、6、8写比例,然后小组交流讨论,把最好的办法推荐给大家。
4、同学们知道,在一天的同一时间内,物体越高它在太阳下的影子也就越长,你能运用今天学习的比例知识,想办法算出我们学校旗杆的高度吗?
五、全课小结。
谁能整理一下,这节课我们学习了哪些知识?
六、布置作业
教学目标:
1、使学生理解并掌握比例的意义和基本性质,认识比例的各部分的名称。学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。
2、培养学生的自学能力、观察能力、判断能力及合作探究能力。
3、经历比例的意义和基本性质形成的过程,体会分析比较、归纳概括、验证的思想方法。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
《比例的意义》教学设计4
教学内容:义务教育课程标准实验教科书数学六年级下册P45练习十的第5—8题
教学目标:
1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。
2、让学生在经历探究的过程中,体验学习数学的快乐。
教学重点:学会解比例。
教学难点:掌握解比例的书写格式。
设计理念:在本课时的设计中,引导学生根据按比例放大图形,把相关数据组成比例,用未知数X来表示比例中的未知项,列出比例式。
在解比例的教学设计上,重点利用旧知的迁移,通过学生主动探索新知与旧知的联系,在比较分析中,把握规律,掌握解比例的方法。
教学步骤教师活动学生活动
一、练习引入
1、小练笔:
在()里填上合适的数。
5:4=():12
4:()=():6
2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?
3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。学生练习
学生回顾比例的基本性质
二、探索新知
出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?
(1)读题审题,理解题意
老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例
(2)引导分析,写出比例
如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。
师介绍:“像上面这样求比例中的未知项,叫做解比例。
(3)找到依据,变形解答
讨论:怎样解比例?根据是什么?
思考:“根据比例的基本性质可以把比例变成什么形式?”
教师板书:6x=13.5×4。“这变成了什么?”(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。
(4)、板书过程,总结思路
师生把解比例的过程完整地写出来。指名板书。
师问:第一步计算的依据是什么?
师生总结解比例的过程。
提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的'基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)
(5)、练习提高,再说思路
做“试一试”,学生独立完成,再说说解题思路。
学生读题,分析题意
学生写出含有未知数的比例式
学生小组交流,大组汇报
学生交流总结思路:在解比例的过程中第一步是关键,是根据比例的基本性质把比例变成方程。下面和以前学习的解方程的方法一样。
学生独立练习,小组说明思路。
三、巩固练习
1、做“练一练”
2、做练习十第6、7题。
3、做练习十第8题
学生先说说按比例“缩小或放大“的含义。再列出相应的比例式并求解。
学生独立审题并解题。讲评时重点指导学生解决第(2)问。
四、比较提高。
1、通过本课的学习,你有哪些收获?
2、把你掌握的解比例的方法在小组里介绍一下,并在大组交流。
五、作业练习九第5、6题。
《比例的意义》教学设计5
【教学内容】
反比例。(教材第47页例2)。
【教学目标】
1。使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2。让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
【重点难点】
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
【教学准备】
投影仪。
【复习导入】
1。让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2。说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
【新课讲授】
1。教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
教师根据学生的汇报说明:高度和底面积有这样的`变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2。归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3。用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?
学生探讨后得出结果。
x×y=k(一定)
4。师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5。组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6。你还有什么疑问
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
【课堂作业】
1。教材第48页的“做一做”。
2。教材第51页第9、10题。
答案:1。(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2。第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:50 100 12
【课堂小结】
说一说成反比例关系的量的变化特征。
【课后作业】
1。完成练习册中本课时的练习。
2。教材51~52页第8、14题。
答案:
2。第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:
(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1。2km,18min跑1。2×18=21。6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0。8km,18min跑0。8×18=14。4(km)。
(3)斑马跑得快。
第3课时反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
《比例的意义》教学设计6
教学目的:
1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。
2.使学生进一步认识事物之间的相互联系和发展变化规律。
3.初步渗透函数思想。
教学重点:
认识反比例关系的意义,掌握成反比例量的变化规律及其特征。教学难点:能够比较有条理的叙述判断过程。教学过程
一、谈话导入:
师:上一节课我们研究了正比例关系,现在谁能说一说判断两个量是不是成正比例的依据是什么?指名说
师:咱们一块做几道题判断一下。出示:
1、除数一定,被除数和商
2、单产量一定,总产量和面积
3、加数一定,和和另一个加数
4、每张纸厚度一定,总厚度和纸的张数指名说并说请判断依据
师:看来大家对正比例知识理解掌握得不错,学完正比例接下来我们该学习什么了?(生答)是啊,有正就有反,这节课我们就来探究反比例的有关知识(板书:反比例)
二、学习
师:既然正与反意义是相反的,大家猜想一下,成反比例的两个量的关系是怎样的呢?(生猜想)
师:到底同学们的猜想是否正确?我们要用事实来验证。独立填写研究单,然后在组内交流
学生自己填,在小组活动,师巡视学生台前展示交流
师:这两个情境中的两个量有什么共同点?这和之前我们推测的一样吗?你能根据我们这两道题总结一下什么是反比例关系吗?指名说,出示大屏幕定义,齐读
师:对于这句话大家有什么不理解的吗?判断两个量是否成反比例的要点是什么?
指名说,(大屏幕出示红色字)
师:你能举出一些生活中成反比例的关系的例子吗?指名举例,追问:相关联的量是哪两种?不变的量是什么?
师强调:要想判断两个量是不是成反比例,除了要相关联,最重要的一点就是要保证这两个量乘积一定。
今天我们学习了反比例关系,大家想想它和我们之前研究的正比例关系有什么相同和区别?指名说出示表格,明确正比例和反比例的异同点。
师:还记得正比例关系图象是什么样的吗?反比例关系也可以用图象来表示,(出示研究单中的两幅图),它和正比例关系图象有什么不同?对,它们是一条
光滑的曲线。拿第二道题举例,你能看出杯子的.底面积分别是40平方厘米,50平方厘米时,水的高度分别是多少吗?指名说
师:今天我们学习了反比例关系,对于今天学过的内容,大家还有疑问吗?
三、练习
1、书上51页8、9、10题,独立写,集体交流。
2、书上51页11题,指名交流,说理。
四、总结
师:这节课你有什么收获?指名说
师:我们不仅收获了知识,更重要的是运用学过的知识学习了新的内容,掌握了这种学习方法,并且不断反思,不断总结,相信我们会在数学的道路上越走越远。
《比例的意义》教学设计7
教学内容:教材第32~34页
教学目标:
1、理解比例的意义,认识比例的基本性质,会判断两个比能否组成比例。
2、培养学生自主参与的意识和主动探索精神;培养学生观察、分析、推理和概括的能力。
重点难点:
重点:理解比例的意义,探索比例的基本性质。
难点:探索比例的基本性质和应用意义,判断两个比能否组成比例。
教学过程:
一、复习旧知,做好铺垫
1、什么是比?比各部分的.名称是什么?
2、求出下面每个比的比值。﹕16 3/4﹕1/8/
二、教学比例的意义
1、创设情境,激发兴趣。1)看课文情境图
2)你知道这些国旗的长与宽各是多少吗?3)测量教室国旗长与宽各是多少吗?4)教室这面国旗长与宽的比值是多少?
5)操场上国旗长与宽的比值是多少?与这面国旗有什么关系?
2、动手计算、探究比例的意义。通过计算引出什么是比例?
3、组织看书,认识名称。
4、利用新知,学以致用。还能找出哪些比来组成比例?归纳总结:
三、教学比例的基本性质
探究新知,充分验证,确定性质。
你能发现比例的内项与外项之间有什么关系吗?小组交流汇报
师总结归纳比例的基本性质。
四、反馈巩固
1)课本做一做
2)练习6的1.4题
五、总结归纳
1)今天我们学习了什么?
2)你能比较“比”和“比例”有什么联系和区别吗?
六、布置作业
教材36页练习6的2.3题。
《比例的意义》教学设计8
教学内容:教科书第32~34页。
教学目标:理解比例的意义,认识比例的基本性质,会判断两个比能否组成比例。
教学过程
一、复习
1.什么叫做比?
2.求出下面每个比的比值。
12∶16 ∶ (板书)
二、教学比例的意义
出示教材第32页的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。
把图变换成四面国旗的画面,每面国旗标注了长和宽的尺寸。
选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。
提问:根据求出的比值,你发现了什么?(两个比的比值相等)
教师边总结边板书:因为这两个比的比值相等,所以我们可以写成一个等式:
2.4∶1.6 = 60∶40 或= ←(板书)
像这样由两个相等的比组成的式子我们把它叫做比例。我们已经知道组成一个比的两个数分别叫做这个比的前项与后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?
四人小组讨论,教师巡视,给予指导。
请小组汇报讨论结果,教师根据学生的汇报,将组成的比例分类板书在黑板上。
教师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的`长与长的比值与宽与宽的比值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。
三、教学比例的基本性质
师:观察黑板上的比例式,你能发现比例的内项与外项之间有什么关系吗? 教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。
《比例的意义》教学设计9
【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第32-33页例1及“做一做”。
【教学目标】
1、明确比例的意义,掌握组成比例的条件,并熟练地判断两个比能否组成比例。能根据不同要求,正确的列出比例式。
3、通过学习培养学生学习数学的兴趣。培养学生的观察能力、判断能力。
【教学重点】比例的意义。
【教学难点】求比值判断两个比能否组成比例,并能正确地组成比例。
【教学准备】多媒体课
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、什么叫做比例?
表示两个比相等的式子叫做比例。
2、今天是星期天,小瑜和小丽一起到文具店去买东西。
(1)小瑜用12元买了4本数学本,小丽用9元买了3本,谁买的本子便宜些?
(2)反馈:
①谁买的本子便宜些?说说你的理由。
②还有别的方法吗?
③这两个比能组成比例吗?为什么?
二、关键点拨
1、比例的.意义。
出示课件:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)25
路程(千米)80200
根据表中的数量你能写出几个比例?你是怎么想的?他们的比值分别表示什么?
2、小结:判断两个比能否组成比例,最关键是看什么?
3、比和比例有什么区别?
生讨论汇报:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
三、巩固练习
1、下面哪组中的两个比能组成比例?把组成的比例写出来。课本第33页“做一做”第1题。
2、独立完成“做一做”第2题后反馈交流。
3、5:8和1:5这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?
反馈:
(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。
(2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?
四、分享收获畅谈感想
这节课,你有什么收获?听课随想
反思与体会:
在本节课中,我充分重视了学生原有的认知基础,即在学生理解掌握比的意义和基本性质的基础上进行教学的,找准了新知识的生长点,为学生探究新知搭建了平台。其次,主要采取探究的方式,充分发挥了学生小组合作,组间交流的作用。在比例的意义和基本性质的教学,我都把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探索,将学习内容的“大板块”交给学生,给学生留有足够的时间、空间。采取小组合作交流的方式,获取结论,并对结果进行相互评价,从而使他们体会成功,共享合作学习的乐趣。在这个过程中,学生的主观能动性得以发挥,主体地位得到充分体现。最后,针对在以往的教学中发现学生学习完比例后把比例和比混淆的问题,我还特意增加了比和比例从意义、各部分名称、基本性质等方面进行横向对比的教学环节,加深学生对知识的印象。当然,纵观全课,还有很多不足之处,比如:如何在教学过程中让学生探讨的问题更贴近生活?教师要进行怎样的引导还值得我进一步思考。
《比例的意义》教学设计10
教学目标:
1、知识与能力目标:在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
2、过程与方法目标:通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力。
3、情感态度价值观:通过自主学习,经历探究的过程,体验成功的快乐。
教学重难点:
教学重点:理解比例的意义和基本性质。
教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:
师生问好!
师:课前我们先进行一组口算练习,下面请##同学上台主持。
一、求比值
3 : 8= 2 : 6= 4 : 4= 9 : 3= 8 : 24=
5 : 20= 8.8 : 1.1= 16 : 96=
二、化简比
4 : 5= 2 : 20=
32 : 4= 4 : 44=
15 : 25= 10 : 80=
师:看来同学们口算的都比较准确,昨天我们共同交流了学习目标,大家进行了自主学习,下面请同学们在小组内对学自主学习中的知识链接部分
(小组活动)
师:知识链接的内容是上学期我们学过的有关“比”的知识,今天我们要学的知识,也和“比”有密切的联系,看大屏幕,在山东半岛的东南端有一座啤酒飘香的城市青岛,而青岛啤酒更是闻名中外,这节课我们就一起探究啤酒生产中的数学,这是一辆货车,正在运输啤酒的主要生产原料——大麦芽,这是它2天的运输情况,根据这个表格,你能发现哪些数学信息?
(学生回答)
师:这位同学发现的数学信息真全面,那你能根据这些数学信息提出有关“比”的数学问题吗?
(学生回答)
师:同学们真了不起,提出了这么多问题!
学习数学,我们不仅要善于提问,还要善于观察,下面请同学们在小组内交流一下自主学习的内容,组长分好工,准备汇报展示。
(小组活动)
师:哪个小组的同学愿意来汇报自主学习的内容?
生汇报:我来汇报……其他小组有什么评价或补充吗?
师评价
师:看来同学们学的不错,表示两个比相等的式子叫做比例,根据比例的定义我们知道比需要满足两个条件就可以组成比例:两个比这两个比的比值相等,例如16 :2 = 32 :4,师:2:1与谁能组成比例?
(生答)
师:我真为你们感到骄傲,想到了这么多不同的答案!
组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
说出老师指的这个数是比例的外项还是比例的内项?
(师指生齐说)
师:同学们反应特别快!比例还可以写成分数形式,那这个比我们可以写成
师:请你观察,在这个分数形式的比例里,比例的外、比例的内项是谁?
师:同学们表现特别棒,那老师来考考你!看能不能通过刚才所学的知识解决我会应用。
师:看来同学们学的真不错,其实,在比例的2个外项和2个内项之中隐藏着1个秘密,下面,请同学们以16 :2 = 32 :4为例,研究一下,试试能不能发现这个秘密,为了研究方便,老师给你提供3个温馨提示
(指1生读温馨提示)
(生合作探究)
师:哪个小组的同学愿意上台来把你们的发现跟同学们分享。
(生汇报展示)
师:同学们能通过举例,验证自己的发现,太厉害了!在比例里,两个外项的积等于两个內项的积,叫做比例的基本性质,观察这个分数形式的比例,可发现交叉相乘的积相等。
师:下面我们就用比例的基本性质解决拓展应用
生
师:同学们真了不起,想出了这么多不同的答案!通过本节课的学习,你有什么收获?
(生谈收获)
师:同学们的收获可真不少!这就是本节课我们要学习的《比例的意义和基本性质》
师:下面我们进行达标检测
(生完成后)
师:哪个小组的同学愿意来汇报自主学习的内容,其他同学拿出红笔,同桌互换。
(小组汇报)
师:全对的同学请举手,组员全对的奖励一颗小印章。
师:同学们这节课表现得真棒,继续努力,好,下课!
教后反思:
《比例的意义和基本性质》是青岛版六年级下册第35—36页的内容,本节的教学目标制定如下:1、在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例(重点)。2、通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力(难点)。3、通过自主学习,经历探究的过程,体验成功的快乐。本节概念性的东西较多,学生需要理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,我大胆放手,通过让学生自学课本,让学生讲的方式,使学生的学习能力得到了提升。 备课前我查阅了有关比例的意义和基本性质的很多资料,并观看了视频,在研读了课标及教学用书后设计了自己的教学思路。《比例的意义和基本性质》是属于概念的'教学,在课的设计上我紧扣“概念教学”这一主题进行设计。下面我从以下几方面反思自己的教学:
一、找准知识衔接点,为新知做好铺垫
比例的意义和基本性质,是在学生学习了“比”后进行的,而“比’是上个学期学习的知识。根据我对学生的了解,大多数学生会把学过的不相关的知识忘到脑后,因此,通过课前口算练习和知识链接环节,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。
二、相信学生利用导学案自学的能力,大胆放手。
课改鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕迹而已。
三、从情境图入手,丰富资源
从境景图入手,主要是让学生能通过现实情景体会比例的应用,运输量和运输次数的比的比值是相等的,由此引入比例的意义的教学。
四、自主探索、合作交流、探究新知。
在教学这节课时,我能充分发挥学生的主体作用,让学生通过小组讨论、交流,自主得出在比例里,两个外项的积等于两个内项的积,然后举例验证,最后归纳出比例的基本性质。学生用实际行动证明了他们对这部分知识的掌握,积极性也很高。
五、练习由易到难
每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,把12 : ( ) = ( ) : 5这个比例补充完整,告知学生有无数个比例,这样能推动学生积极思考,培养学生的发散思维。
根据一个乘法等式,写出比例,鼓励学生逆向思维,意在考察学生能否灵活运用新知。学生的表现也挺让我惊喜的,学生的思维很灵动。
每一次的课,总会有一些优点,但也发现了自己的一些不足:
一、采用多种评价方式
二、研究教材、挖掘教材、如何准确地处理和把握教材的能力还有待提高。
只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。以上是自己对本节课的一些反思,希望领导和老师们批评指正。
《比例的意义》教学设计11
素质教育目标
(一)知识教学点
1.使学生理解掌握比例的意义和基本性质。
2.认识比例的各部分的名称。
(二)能力训练点
1.使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。
2.培养学生的观察能力、判断能力。
(三)德育渗透点
对学生进一步渗透辩证唯物主义观点的启蒙教育。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教具学具准备:
小黑板、投影片、投影仪。
教学步骤
一、铺垫孕伏
教师出示复习题,回忆有关比的知识。
1.什么叫做比?
2.什么叫做比值?
3.求下面各比的比值:
4.上面哪些比的比值相等?
学生回答后,师说:4.5∶2.7和10∶6这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接。(板书:4.5∶2.7=10∶6)
二、探究新知
1.比例的意义。
出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是______;
第二次所行驶的路程和时间的比是______。
这两个比的比值各是多少?它们有什么关系?
(1)教师引导学生对上面的问题一一解答。使学生清楚地看到这两个比的比值都是40,所以这两个比相等。因此就可以写成这样的等式
(2)由教师告诉学生:象4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)
师问:什么叫做比例:组成比例的关键是什么?
生答:表示两个比相等的式子叫做比例。(板书)
引导学生议论、交流后板书:表示两个比相等的式子叫做比例。(在“两个比相等”下边划“”。)
(3)做一做
下面哪组中的两个比可以组成比例?把组成的比例写出来。
①6∶10和9∶15
②20∶5和1∶4
第①题由教师引导学生完成,思路如下:
所以:6∶10=9∶15
其余各题分组讨论后由学生独立完成。
(4)填空
①如果两个比的比值相等,那么这两个比就()比例。
②一个比例,等号左边的比和等号右边的比一定是()的。
2.比例的基本性质。
(1)师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(边叙述边板书如下)
(2)让学生看下面这些比例,说出它的外项和内项是多少?
4.5∶2.7=10∶6
6∶10=9∶15
(3)让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明。(师边板书如下)
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
(4)由学生自己任选两三个比例,计算出它的.外项积和内项积。从两个乘积的关系使学生进一步认识到,在每个比例里,两个外项的积都等于两个内项的积。
(5)由教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)
(板书课题:加上“和基本性质”,使课题完整。)
(6)想一想:如果把比例写成分数形式,等号两端的分子和分母分别交*相乘的积有什么关系?为什么?
指名回答后,师板书:
(7)做一做
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。
6∶3和8∶50.2∶2.5和4∶50
3.阅读课本第9、10页的内容并填空。
三、巩固发展
1.说一说比和比例有什么区别。
讨论后指名说明:
比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四个项。
2.在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。
3.先应用比例的意义,再应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(1)6∶9和9∶12
(2)1.4∶2和7∶10
4.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几个就组几个)
2、3、4和6
四、全课小结
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组比例。
五、布置作业练习一第3题。
《比例的意义》教学设计12
【教学内容】苏教版P40页例3、练一练及练习九的3----7题。
教学目标:
1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、创设情境,导入新课
师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)
师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)
师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的意义吗?(学生回答)
好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)
2厘米
3.2厘米
4.8厘米
3厘米
6.4厘米
4厘米
9.6厘米
6厘米
二、新授
师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?
(学生板演,观察到比值相等,教师板书:两个比相等)
师:那我们就可以将这两个比用等号连接。(教师板书学生汇报的两个相等的比)
教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。
请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答,等式;有两个相等的比)
(教师再强调:一定是比值相等的两个比才能组成比例。)
师:你还能从四面国旗中找出哪些比例?
(学生写在练习本上,然后汇报。教师板书)
师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(学生口答)
?师:我们刚才一直在强调比和比例的'联系,那么比就是比例吗?
学生从形式上区分:比由两个数组成;比例由四个数组成。
学生从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。
三、巩固应用
(一)数的比例
课本.40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)
(二)形的比例
出示两个具有放大关系的三角形
3厘米
5厘米
4.5厘米
7.5厘米
师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)
(三)生活中的比例
师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!
1、课本41页第3题(学生独立完成,小组订正交流。)
2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)
四、总结
师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)
师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。
五、课堂检测
1、下面哪些组的两个比可以组成比例?如果能,在()打对号。
10:2和35:42()0.6:0.2和:()
:4和3:():和12:8()
2、在下面的六个比中,选择两个比组成比例。
::4:71.4:2.8:10:15
3、写出比值是的两个比,并组成比例。
4、小强3分钟走了180米,小刚1小时走了3.6千米。小强说他们各自所走的路程和时间的比能组成比例,小刚说不能组成比例。请问:谁说的对?
六、布置作业
课本练习九4题、7题
《比例的意义》教学设计13
教学目标:
1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。
3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。
教学重点:理解比例的意义和性质。
教学难点:应用比例的意义和性质判断两个比能否组成比例。
教学准备:多媒体课件一套。
教学过程:
一、渗透情感,导入新课
1、媒体出示国旗画面,学生观察,激发爱国情操。
天安门升国旗仪式
校园升旗仪式
教室场景
签约仪式
师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?
2、媒体出示国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
签约仪式:长15厘米,宽10厘米。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的比值相等。
二、认识比例,发现特征
1、引出比例,理解比例的意义。
媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。
并板书:2.4∶1.6 =3/2
60∶40=3/2
师指出这两面国旗的'长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。
并板书:2.4∶1.6 =60∶40
2、认识比例,知道比例各项的名称。
⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。
⑵学生尝试说说什么叫比例。
⑶教学比例的各部分的名称。
自学课本第34页的第一段话,初步认识比例各项的名称。
出示其中一个比例,指出比例各部分的名称。
学生说说自己写的比例的各项的名称。
⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。
⑸判断下列几个比能不能组成比例。
媒体出示,学生判断并说出理由。
下面哪组中的两个比可以组成比例,把组成的比例写出来。
⑴6∶10和9∶15 ⑵20∶5和1∶4
⑶1/2∶1/3和6∶4 ⑷0.6∶0.2和3/4∶1/4
⑹思考:比和比例有什么联系和区别?
学生自主思考,集体交流,了解比例和比的联系和区别。
3、自主练习,发现比例的基本性质。
⑴媒体出示
8∶4=()∶() 15:10=()∶4 12∶()=()∶5
媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?
⑵师提出问题:在一个比例中,它们项有什么特点?
⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。
⑷集体交流,发现性质。
学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。
⑸观察自己写的其它几个比例,验证发现。
⑹小结性质
学生尝试用完整的数学语言说一说自己的发现。
媒体出示学生的发现,教师指出这就是比例的基本性质。
三、巩固练习,提高认识
1、基本练习
判断,媒体出示
应用比例的基本性质,判断下面哪组中的两个比可以组成比例
⑴6∶3和8∶5 ⑵0.2∶2.5和4∶50
⑶1/3∶1/6和1/2∶1/4 ⑷1.2∶3/4和4/5∶5
2、拓展练习。
比一比,谁写得多。
在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。
四、总结全课,升华认识
学生回顾全课,说说比例的意义和基本性质。
板书设计:
比例的意义和基本性质
2.4∶1.6 =3/2
60∶40=3/2
《比例的意义》教学设计14
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y= tx
k可知:形如y= (k为常数,k≠0)的.函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。
当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
k x?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
《比例的意义》教学设计15
教学内容:
义务教育课程标准实验教科书数学六年级下册P43“练一练”和练习十的1~4题
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质。
3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。
教学重点:
理解并掌握比例的基本性质。
教学难点:
探究发现比例的基本性质。
设计理念:
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。
教学步骤教师活动学生活动
一、复习引新
导入新课
1、找找比比:
(判断下面的比,哪些能组成比例?把组成的比例写出来。)
3:518:300.4:0.21.8:0.9
5/8:1/47.5:32:89:27
学生独立完成,重点说说判断过程。
2、今天我们继续研究比例的有关知识。
学生练习
学生回顾判断两个比能否组成比例的方法
二、认识比例
探索规律1、认识比例各部分的名称
(1)介绍“项”:组成比例的四个数,叫做比例的项。
(2)3:5=18:30学生尝试起名。
师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。
3:5=18:30
内项
外项
(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?
出示:3/5=18/30
(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
2、教学例4
(1)理解题意,信息搜索:
提问:你能根据图中的数据写出比例吗?
(2)、学生写不同比例:
引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
(3)、学生探索规律
学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的`积。)
(4)、写比例,验证规律:
是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。
(5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。
4、练习:“试一试”判断能否组成比例。
出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。
提问:2.6:1.8和0.5:0.25能组成比例吗?根据比例的基本性质,能判断两个比能不能组成比例吗?
学生练习:找出比例中的内项和外项
6:5=36:30
4:7=21:49
学生自主表达,图中有哪些数据信息?
学生独立思考,再小组交流
学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()
学生分析哪两个数是外项,哪两个数是内项。
比较理解比例的基本性质
学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
三、巩固练习
拓展提高
1、做“练一练”
使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在()里填上合适的数。
5:3=():6
4:()=():5
3、做练习十第1、2题学生尝试练习后交流讨论
先让学生尝试填写,再交流明确思考方法。
四、全课小结
总结反馈通过今天的学习,你有哪些收获?
把你发现规律的方法介绍给朋友、亲人。
五、课堂作业练习十3、4题
【《比例的意义》教学设计】相关文章:
比例的意义教学设计09-11
比例的意义教学设计10-23
《比例的意义》教学设计05-29
《比例的意义》教学反思10-23
比例的意义教学反思10-22
比例的意义教学反思05-23
《比例的意义和基本性质》教学设计09-15
《比例的意义和基本性质》教学设计10-16
比与比例教学设计08-13
反比例意义教学反思09-04